KING-GAGE Advanced Non-Contact Tank Level Measurement

KING-GAGE® LevelWAV radar level transmitter provides continuous measurement suitable over a broad range of temperatures, pressures and density variations in liquid storage or processing tanks. This radar transmitter can be used in process conditions exhibiting visible vapors, foam and/or surface agitation. Non-contact measurement is possible for highly corrosive materials (caustics, acids, solvents) and slurries.

KING-GAGE LevelWAV utilizes advanced microwave circuitry that automatically adjusts transmit energy and receiver gain to detect only the reflection from the media surface. 2-wire technology is easy to install and simplifies wiring requirements at the tank. Accurate and reliable operation with no moving parts or product contact eliminates maintenance requirements of other level technologies.

Compact size and mounting footprint makes tank top installation of the LevelWAV radar transmitter suitable for even tight spaces. Radar level measurement is a practical solution in retrofit applications to replace failing or erratic level transmitters.

Output from the LevelWAV radar transmitter can be monitored on KING-GAGE indicators and multiple tank displays enabling tank level to be represented as total volume, weight or depth of contents. Each of these display options also provides excitation power (24Vdc) to the transmitter through the signal loop cable.

Bronkhorst mass flow meters and controllers in the food industry

In the food industry there are many applications in which gases or liquids need to be measured or controlled with mass flow meters and/or controllers. For example, these applications include the aeration process or the dosage of additives, like flavours and colourants. Indirectly, surface treatment applications like the sterilization of packaging is of high importance as well. Bronkhorst has published many stories regarding the omnifarious and demanding food industry and I would like to share some of these stories with you.

Additive dosing for confectionery industry
There is a huge variation in candy available on the market, each brand with its own taste, texture and appearance. Erwin Broekman had the opportunity to visit Haas-Mondomix, a machine builder that is specialized in equipment for the food industry. With ultrasonic volume flow meters, Haas-Mondomix measures the amount of additives – flavourings, colourings and acids – that are added to the main stream of the production process. Please read the blog to learn more about this application.

In the chocolate confectionery industry, there’s an ever increasing number of variations in flavours as well. Due to this enormous growth, mass flow meters and controllers find their way into the confectionery industry. Coriolis flow meters in combination with a pump are an ideal solution for dosing flavours and functional ingredients. Read more about dosing flavour into chocolate.

Aeration within the production process of delicacies like ice cream and cake
Ice cream is made by freezing and simultaneously blending air into a brewage of fat, sugar and milk solids. Air makes up anywhere from 30% to 50% of the total volume of ice cream, so aeration is crucial during production. A side effect of adding air to ice cream is that it tends to melt more quickly. Thus, for attaining an optimal structure of the ice cream, it’s important to have a stable inlet air flow in the production process with a constant cream/air ratio. This can be achieved by using a mass flow controller. Read the blog about the production of ice cream, and get to know your favourite summer treat.

Intrinsically Safe Impedance Dew Point Transmitters to ensure safety of Hydrogen Coolant

Application Background
Within the power generation industry, it is common practice to use hydrogen as a direct coolant for the generator stator windings. Hydrogen is used because it has an extremely high heat transfer capacity – it is much more efficient at transferring heat than any other medium.

The re-circulating hydrogen removes heat from the generator, transferring it, via a heat exchanger, into a secondary cooling circuit which uses de- mineralized water. Often this de-mineralized water is then cooled either by sea water or river water, dependent upon the location of the power station.

As it is not possible to hermetically seal the generator set casings there is the potential for moisture to ingress from the surrounding air. Similarly, as the heat exchanger gradually becomes more porous with age, it too will allow moisture to get into the hydrogen. So it is important that the circulation loop for hydrogen gas on such an installation should include a desiccant dryer, to continuously remove absorbed moisture. The greatest fear, should moisture be allowed to build up in the hydrogen, is that condensation will occur on exposed live metal parts – leading to the risk of flashover. On generator sets which typically produce 22 kV at 19,000A, this could be disastrous. It is therefore recognised practice within the industry that the dew point of the hydrogen gas leaving the generator set should be maintained at a safe margin below the minimum casing temperature, typically an upper limit of 0 °C dew point at system pressure is observed. Should the hydrogen dew point rise above this upper limit, it is important for immediate action to be taken – either to decommission the generator to effect a repair or more likely to take immediate remedial action by pumping fresh, dry hydrogen into the system.

Calibration for Crane Scale and Dynamometer Applications

Interface is well-known for excelling at calibration services for load cells. Did you know this service excellence extends to dynamometers and crane scales?

Interface can calibrate dynamometers and crane scales with capacities of 100,000 pounds of force or more. This family of devices is often found in industrial, commercial, energy, military, and aerospace industry applications.

Crane scales are used as overhead weighing solutions ranging from light to heavy capacities and are normally placed in the load string of a crane. The devices provide crane overload protection, as well as information about the handling of bulk material. Some models are equipped with wireless communications to allow monitoring from safe distances at multiple locations.

Selecting Instrumentation For Functional Safety (SIL) Applications

Over the past couple of decades, the process industries have seen many changes when it comes to the design and implementation of emergency shutdown/safety systems. The introduction of several international and regional standards requires a more rigorous approach to the overall safety lifecycle of a system compared to the use of best engineering design practices of the past. As a result, a broader and significant increase in the implementation of these standards has been noted within the industry.

The standards most commonly being referenced by customers are:
• IEC 61511: Functional Safety – Safety Instrumented Systems for the Process Industry Sector
• ANSI/ISA-84.00.01 (IEC 61511 Mod) – Functional Safety: Safety Instrumented Systems for the Process Industry Sector
• IEC 61508: Functional Safety of Electrical, Electronic, Programmable Electronic Safety Related Systems

Beamex introduces a better way for workshop calibration

The new Beamex CENTRiCAL is easy to configure to suit individual requirements while the standard electrostatic discharge (ESD) protection offers electrical safety measures as a standard. Each CENTRiCAL is supplied with accredited calibration certificates to ensure quality and traceability. The Beamex CENTRiCAL is available with superb ergonomics via motorized height control, or as a fixed height bench. A straight bench as well as corner modules are available to meet user needs. A trolley-based design is also available for mobile solutions.

Katronic expands product range with innovative flowmeter for gases

Katronic expands product range with innovative flowmeter for gases

Katronic is very proud to announce its newest development, the KATflow 180 clamp-on flowmeter for gases. The ATEX-approved KATflow 180 takes non-invasive, clamp-on measurement into new areas with the ability to measure gaseous flow at low pressures and even in metal pipes – something that was previously virtually impossible to achieve.